
Interactions between chemical and biological parameters 

 

It is needless to emphasize the importance of water in our life. Without water, there is no 

life on our planet.  We need water for different purposes. We need water for drinking, for 

industries, for irrigation, for swimming and fishing, etc.  

Water for different purposes has its own requirements fo composition and purity. Each 

body of water needs to be analysed on a regular basis to confirm to suitability. The types of 

analysis could vary from simple field testing for a single analyte to laboratory based multi-

component instrumental analysis. The measurement of water quality is a very exacting and time 

consuming process, and a large number of quantitative analytical methods are used for this 

purpose. Water is a good solvent, and this property turns in the most efficient fluid for the 

transport of dissolved nutrients and is crucial for the transport of nutrients such as P, through 

biosphere. This property can be considered a disadvantage, it can be easily polluted, staying with 

in this state for a long time (Nicoara M., 2008). General properties of natural waters are 

primarily determined by liquid substances, solid and gaseous present in water the form of 

dissolved or suspended material. In order to characterise any water body, studies on the major 

components, hydrology, physico-chemical and biological characteristics, should be carried out. 

The physical and chemical properties of a freshwater body are characteristic of the climatic, 

geochemical, geomorphological and pollution conditions (largely) prevailing in the drainage 

basin and the underlying aquifer. Chemical water pollution can occur accidentally, but most 

often due to uncontrolled removal of various waste or liquid waste, solid or gaseous. Sources of 

water pollution are many, but most commonly, they are the household waste, industrial and 

agricultural buildings. 

Water Framework Directive defines good chemical status of surface waters as the 

chemical status achieved by a body of water from which the pollutant concentrations do not 

exceed the environmental quality standards established in Annex IX and under Article 16 (7), 

and under other Community legislation that establish such standards. Environmental Quality 

Standards (EQS) are defined as concentrations of pollutants that should not be exceeded in order 

to protect human health and the environment. Water bodies that do not comply with all the 



environmental quality standard values indicate that not fulfill the objective of good chemical 

status. In assessing the chemical status, priority substances are relevant. In this respect, the 

European Commission approved the Directive. 2008/105/EC on environmental quality standards 

in the field of water policy and amending the Water Framework Directive (Annex II of Directive 

2008/105/EC replaced Annex X of the Water Framework Directive) which shows values for 

environmental quality standard priority substances and other pollutants (33 substances and 

groups of substances, synthetic and non-synthetic, synthetic + 8 other pollutants). 

 

Fig. 1. The color code from the Water Framework Directive for the water 

chemical status 

Also, a thorough knowledge of the hydrological properties of the water body must be 

acquired before an effective water quality monitoring system is established. Each of the inland 

waterbody is characterised by unique hydrological features. For example, rivers are characterised 

by uni-directional current with relatively high average velocity (0.1 – 1.0 m/S). In general, 

thorough and continuous vertical mixing is achieved in rivers due to the prevailing currents and 

turbulence.  

Monitoring and assessment strategies are very important mainly in the North-Western 

Shelf of the Black Sea where the unique ecosystem is burdened by excessive loads of nutrients 

and hazardous substances from the coastal countries and the rivers that enter it – the most 

important of which is the Danube. The status of the Danube River, Delta and Romania’s coastal 

waters depends considerably on pollutant inputs from upstream countries (particularly for N and 

P loads). Diffuse agricultural sources, especially chemical fertilizer use in upstream countries 

and the improper working of wastewater treatment plants in Central and Eastern Europe is a 

major input. Many Romanian inland rivers, particularly those from mountain areas, remain 



undisturbed by major anthropogenic pressure (57% of water bodies) and are of high ecological 

value. However, economic development between 1960 and 1989 resulted in a significant 

worsening of the water quality of the Danube and inland rivers. Since this time, water quality has 

been improving (due to a reduction in economic activities and also new regulations based e.g. on 

the “polluter - pays” principle) but remains inferior to 1950s levels. The status of Romanian 

coastal waters depends considerably on Danube water quality. With regard to all sources (the 

Danube and other seashore based sources) the vast majority of pollutants are brought by the 

Danube: 99.5% of nutrients; 99%+ of N and 91.8% P-PO4. The dominant N-S flow of marine 

currents favours pollutant dispersion from the Danube in Romanian coastal waters. This has led 

to an increase in nutrient concentrations in marine sediments (levels decreasing N-S) (ICPDR).  

Current monitoring activities include a river monitoring system for dangerous substances; 

heavy metals monitoring for all water categories and micro-pollutants monitoring. These have 

been implemented using Trans-boundary National Monitoring Network (TNMN) data. 582 

industrial units (2001 data) have been inventoried as discharging dangerous substances into 

water resources /sewage systems. Starting in 2005, the Water Users Inventory (discharges of 

dangerous priority substances) and the Water Users Register (priority substances) are being 

updated. Currently monitoring purposes has enriched being pursued, in particular, the 

development quality of the aquatic environment and how the environment is affected by the 

release of contaminants resulting from human activities. This type of monitoring is often known 

as monitoring the impact of human activities on the environment (Mohamed, 2012), the study of 

interactions between biotopes, namely the relationship between environmental variables and 

their influence on aquatic communities is of paramount importance in the evaluation of water 

quality (Topa, 2011; Căldăraru, 2013). 

An effective monitoring based on chemical parameters, on the Danube, must be based on 

a strict methodology of sampling and determination. The sample collected should be small in 

volume, enough to accurately represent the whole water body. The water sample tends to modify 

itself to the new environment. It is necessary to ensure that no significant changes occur in the 

sample and preserve its integrity till analysed (by retaining the same concentration of all the 

components as in the water body). The essential objectives of water quality assessment are to: 

- define the status and trends in water quality of a given water body. 



-  analyse the causes for the observed conditions and trends. 

- identify the area specific problems of water quality and provide assessments in the form 

of management to evaluate alternatives that help in decision-making. 

Chemical parameters analysed to assess the water quality are: 

-  pH, Electrical Conductivity (E.C), Total Solids (TS), Total Dissolved Solids (TDS), 

Total Suspended Solids (TSS), Total Hardness, Calcium Hardness, Magnesium Hardness, 

Nitrates, Phosphates, Sulphates, Chlorides, Dissolved Oxygen (D.O), Biological Oxygen 

Demand (BOD), Chemical Oxygen Demand (COD), Fluorides, Free Carbon-di-oxide, 

Potassium and Sodium 

- Heavy metals: Lead, Copper, Nickel, Iron, Chromium, Cadmium and Zinc 

Water Quality Index 

In respect to these aforementioned chemical parameters, a important tool to assess water 

quality is Water Quality Index. Water concept indexing by a numerical value that expresses 

quality based on physical measurements and chemical has been developed since 1965 in the 

United States. This has been studied extensively since the early 1970s in an effort to compare the 

quality of water bodies in all areas of the country. It is useful to compare the quality of the water 

in the water system over time.  

Differences in the manner of calculation of WQI European and U.S. and Canada consist of 

the statistical method and manner of interpretation applied parameter values and their weights. 

WQI provides complex scientific information and synthesizes into a single number if the water 

falls in the class of suitable quality for use in human activities. This indicator is recognized as 

one of the 25 indicators that appreciate the quality of the environment, so-called environmental 

quality indicators (Environmental Performance Index - EPI). In the literature several methods are 

known for determining the WQI (Lumb, 2011).  

To determine the water quality index using the following empirical equation: 

 

𝑊𝑄𝐼 =  
∑ 𝑊𝑖𝑞𝑖

∑ 𝑊𝑖
  



Europe has developed a concept based on the normalization of water quality parameters ( 

concentrations ) and then combining them into a model that contains all the parameters studied, 

each having a certain weight in the final calculation relationship (Milanovic , 2011).  

Our research and tests reveal that some parameters have a greater influence on the values of the 

WQI index, namely heavy metals. 

 Parameters affecting the ecosystem of rivers 

The first step for choosing an appropriate bio-index and obtaining its possible 

mathematical relationship with physicochemical characteristics of river water is identifying the 

parameters with considerable effects on the ecosystem of the river being studied. Studying the 

mathematical relationship between variations of biotic indices with these physicochemical 

characteristics is the second step. In this step, the proper biotic index which shows strongest 

statistical relation with the physicochemical parameters can be selected (Boulton, 1999). Some of 

the most influencing physicochemical characteristics of the river water bodies on the ecosystems 

can be listed as follows: 

•River discharge is the most important hydrologic characteristic of rivers. It has direct and 

indirect impacts on the ecosystem health. While river discharge directly satisfies the needs of 

species in rivers, indirectly change the physical and chemical quality of water. 

•Water velocity is among the major characteristics affecting river ecosystems. It has significant 

effects on morphology of river beds and movement of sediments which both have impacts on 

various species Floods and all types of hydrologic alterations can significantly change the 

ecosystem health one way or another. 

•In addition to the hydrological conditions of the river, water quality parameters also play a 

major role in ecosystem health. Any change in water quality can lead to variations in 

compositions of plants and animal species. The most important water quality parameters in terms 

of impact on aquatic ecosystems include temperature, salinity, acidity, Total Dissolved Solids 

(TDS), pH, DO and BOD5. Many physical processes and chemical and biological 

transformations are sensitive to temperature variations. Salinity increase in freshwater 



ecosystems generally decreases biodiversity and may reduce the available food resources (EPA; 

Nzecc & Armacanz, 2000). Generally lower acidity leads to reduced biodiversity and species 

composition of various invertebrate communities. Increased turbidity reduces light penetration 

depth and thus limits the growth of aquatic species. Since oxygen is needed for aerobic 

respiration of aquatic species, low DO concentration is harmful to plants and aquatic organisms 

(Yazdian, 2014). 

Relationship between chemical characteristics of water and biotic indices 

The criteria for understanding the quality of aquatic environment is rich, but there is a 

gap between these studies and those related to water resources planning and management. Most 

of the previous studies in the field of water resources planning and management have focused on 

socio-economic aspects of water allocation to different users while some also have considered 

physicochemical water quality constraints (Jager, 2008).  

Bio-indices have not been used in these studies mostly because of the lack of knowledge 

of water resources modelers about these indices and also limited interval of limnological 

measurements. Previous studies some of which are also cited later in the section, show that the 

limnological information are only available in very short periods of time (mostly one or two 

years) in very limited rivers specially in the under developed countries while water resources 

planning and management studies require long records of data (usually longer than 30 years). To 

close this gap, one approach which is the focus of this study is to find a mathematical 

relationship between an ecological index which can reflect the overall environmental condition 

of a river in the study area and the physicochemical properties of water. Since there are 

widespread databases about physicochemical characteristics of water bodies in many basins 

around the world, finding this relationship can help in determining the quality of aquatic 

environments wherever no record on the quantity or diversity of species is available. 

Several studies have shown consistency between variations of biotic indices and fluctuations 

in physicochemical characteristics of water: Czerniawska and Kusza (2005), studied correlation 

between bio-indices and diversity indices at the family level of benthic macro-invertebrates with 

physicochemical variables of Nysa Klodzka River in southern Poland, using Spearman’s 

correlation coefficient. Yap et al. (2006) studied variations of a benthic species called 



Oligochateas and physicochemical parameters of water in a river in Malaysia from March 1998 

to February 1999, and showed that there has been a negative correlation between density and 

distribution of this benthic macro-invertebrate and DO and PH, and a positive correlation with 

electrical conductivity, BOD, NO3, NH3, TSS, COD, Cc and Zn. Azrina et al. (2006) studied the 

correlation between richness and diversity index of benthic macro-invertebrates communities 

with physicochemical parameters of water of Langat River, Malaysia for four consecutive 

months (March–June 1999), and showed that they are mainly affected by TSS and EC of the 

river water. They showed that the richness index has a strong negative correlation with TSS, 

width of the river and temperature while Simpson diversity index is strongly correlated with TSS 

and electrical conductivity of water (Yazdian, 2014). 

One of our research initiatives is to determine the influence of environmental variables 

(chemical parameters) in the aquatic environment, respectively the Danube river, by analyzing 

the impact of these parameters on aquatic organisms. To quantify the influence of chemicals on 

biological indices taking into account the time required for reaction is justified analyzing the 

correlations between biological indices and WQI. The purpose of these correlations is to assess 

the time required for biological systems respond to changes in the physico-chemical properties 

and to determine which are the most important biotical indices suitable to be used in the 

monitoring and assessment of Lower Danube water quality.   

For correlation of biological indices with quality index WQI have been used different 

regression models using as dependent variable biological indices and the independent variable 

WQI index.      

Therefore, we tested the influence of WQI on 13 biotic indices in corresponding seasons. 

Based on our previous studies from 2011 and 2012 it had been statistically proved the 

influence of WQI on quality biotic indices and the results and test are presented below: 

 

 

 

 

 

 



Corresponding seasons: 

Data file: WQI_BIO corect.csv  

 

Simple Regression - BMWP spring 2011 vs. WQI spring 2011  
Dependent variable: BMWP spring 2011  

Independent variable: WQI spring 2011  

Squared-Y model: Y = sqrt(a + b*X)  

 

Coefficients  

  Least Squares Standard T   

Parameter Estimate Error Statistic P-Value 

Intercept -4762.74 733.46 -6.49353 0.0074 

Slope 121.391 15.1289 8.02381 0.0040 

 

Analysis of Variance  

Source Sum of Squares Df Mean Square F-Ratio P-Value 

Model 2.36929E+06 1 2.36929E+06 64.38 0.0040 

Residual 110403 3 36800.8     

Total (Corr.) 2.47969E+06 4       

 

Correlation Coefficient = 0.977485  

R-squared = 95.5477 percent  

R-squared (adjusted for d.f.) = 94.0636 percent  

Standard Error of Est. = 191.835  

Mean absolute error = 128.479  

Durbin-Watson statistic = 1.28165 (P= 0.1653 )  

Lag 1 residual autocorrelation = -0.0685006  

 

The StatAdvisor  

The output shows the results of fitting a squared-Y model to describe the relationship between 

BMWP spring 2011 and WQI spring 2011. The equation of the fitted model is 

 

  BMWP spring 2011 = sqrt(-4762.74 + 121.391*WQI spring 2011) 

 

Since the P-value in the ANOVA table is less than 0.05, there is a statistically significant 

relationship between BMWP spring 2011 and WQI spring 2011 at the 95% confidence level. 

 

The R-Squared statistic indicates that the model as fitted explains 95.5477% of the variability in 

BMWP spring 2011 after transforming to a reciprocal scale to linearize the model. The 

correlation coefficient equals 0.977485, indicating a relatively strong relationship between the 

variables. The standard error of the estimate shows the standard deviation of the residuals to be 

191.835. 

 

The mean absolute error (MAE) of 128.479 is the average value of the residuals. The Durbin-

Watson (DW) statistic tests the residuals to determine if there is any significant correlation based 



on the order in which they occur in your data file. Since the P-value is greater than 0.05, there is 

no indication of serial autocorrelation in the residuals at the 95% confidence level.  

 

Plot of Fitted Model 

 
 

The StatAdvisor  

The output shows the results of fitting a squared-Y model to describe the relationship between 

BMWP spring 2011 and WQI spring 2011. The equation of the fitted model, shown as a solid 

line, is 

 

  BMWP spring 2011 = sqrt(-4762.74 + 121.391*WQI spring 2011) 

 

The inner bounds show 95% confidence limits for the mean BMWP spring 2011 of many 

observations at given values of WQI spring 2011. The outer bounds show 95% prediction limits 

for new observations.  

 

Comparison of Alternative Models  

Model Correlation R-Squared 

Squared-Y model: Y = sqrt(a + b*X) 0.9775 95.55% 

Squared-Y square root-X: Y = sqrt(a + b*sqrt(X)) 0.9774 95.54% 

Squared-Y logarithmic-X model: Y = sqrt(a + b*ln(X)) 0.9769 95.44% 

Double-squared: Y = sqrt(a + b*X^2) 0.9761 95.29% 

Squared-Y reciprocal-X model: Y = sqrt(a + b/X) -0.9747 95.00% 



Logarithmic-X model: Y = a + b*ln(X) 0.9513 90.49% 

Square root-X model: Y = a + b*sqrt(X) 0.9510 90.43% 

Reciprocal-X model: Y = a + b/X -0.9505 90.34% 

Linear model: Y = a + b*X 0.9502 90.28% 

Squared-X model: Y = a + b*X^2 0.9470 89.68% 

Square root-Y logarithmic-X model: Y = (a + b*ln(X))^2 0.9302 86.53% 

Square root-Y reciprocal-X model: Y = (a + b/X)^2 -0.9297 86.44% 

Double square root model: Y = (a + b*sqrt(X))^2 0.9297 86.43% 

Square root-Y model: Y = (a + b*X)^2 0.9287 86.24% 

Square root-Y squared-X model: Y = (a + b*X^2)^2 0.9250 85.55% 

Multiplicative model: Y = a*X^b 0.9030 81.54% 

S-curve model: Y = exp(a + b/X) -0.9026 81.47% 

Logarithmic-Y square root-X model: Y = exp(a + b*sqrt(X)) 0.9024 81.44% 

Exponential model: Y = exp(a + b*X) 0.9013 81.23% 

Logarithmic-Y squared-X: Y = exp(a + b*X^2) 0.8974 80.53% 

Reciprocal-Y logarithmic-X model: Y = 1/(a + b*ln(X)) -0.8318 69.18% 

Reciprocal-Y square root-X: Y = 1/(a + b*sqrt(X)) -0.8315 69.13% 

Double reciprocal model: Y = 1/(a + b/X) 0.8307 69.01% 

Reciprocal-Y model: Y = 1/(a + b*X) -0.8306 68.99% 

Reciprocal-Y squared-X: Y = 1/(a + b*X^2) -0.8271 68.41% 

Logistic model: Y = exp(a + b*X)/(1 + exp(a + b*X)) <="" td="">    

Log probit model: Y = normal(a + b*ln(X)) <="" td="">    

 

The StatAdvisor  

This table shows the results of fitting several curvilinear models to the data. Of the models fitted, 

the squared-Y model yields the highest R-Squared value with 95.5477%. This is the currently 

selected model. 

Simple Regression - BMWP summer 2011 vs. WQI summer 2011  
Dependent variable: BMWP summer 2011  

Independent variable: WQI summer 2011  

Double-squared: Y = sqrt(a + b*X^2)  

 

Coefficients  

  Least Squares Standard T   

Parameter Estimate Error Statistic P-Value 

Intercept -1004.03 290.707 -3.45374 0.0408 

Slope 0.650379 0.100083 6.49841 0.0074 

 

Analysis of Variance  

Source Sum of Squares Df Mean Square F-Ratio P-Value 



Model 1.27077E+06 1 1.27077E+06 42.23 0.0074 

Residual 90275.9 3 30092     

Total (Corr.) 1.36104E+06 4       

 

Correlation Coefficient = 0.966267  

R-squared = 93.3671 percent  

R-squared (adjusted for d.f.) = 91.1562 percent  

Standard Error of Est. = 173.47  

Mean absolute error = 126.709  

Durbin-Watson statistic = 2.25142 (P= 0.5112 )  

Lag 1 residual autocorrelation = -0.457009  

 

The StatAdvisor  

The output shows the results of fitting a double squared model to describe the relationship 

between BMWP summer 2011 and WQI summer 2011. The equation of the fitted model is 

 

  BMWP summer 2011 = sqrt(-1004.03 + 0.650379*WQI summer 2011^2) 

 

Since the P-value in the ANOVA table is less than 0.05, there is a statistically significant 

relationship between BMWP summer 2011 and WQI summer 2011 at the 95% confidence level. 

 

The R-Squared statistic indicates that the model as fitted explains 93.3671% of the variability in 

BMWP summer 2011. The correlation coefficient equals 0.966267, indicating a relatively strong 

relationship between the variables. The standard error of the estimate shows the standard 

deviation of the residuals to be 173.47. 

 

The mean absolute error (MAE) of 126.709 is the average value of the residuals. The Durbin-

Watson (DW) statistic tests the residuals to determine if there is any significant correlation based 

on the order in which they occur in your data file. Since the P-value is greater than 0.05, there is 

no indication of serial autocorrelation in the residuals at the 95% confidence level.  

 

Plot of Fitted Model 



 
 

The StatAdvisor  

The output shows the results of fitting a double squared model to describe the relationship 

between BMWP summer 2011 and WQI summer 2011. The equation of the fitted model, shown 

as a solid line, is 

 

  BMWP summer 2011 = sqrt(-1004.03 + 0.650379*WQI summer 2011^2) 

 

The inner bounds show 95% confidence limits for the mean BMWP summer 2011 of many 

observations at given values of WQI summer 2011. The outer bounds show 95% prediction 

limits for new observations.  

 

Comparison of Alternative Models  

Model Correlation R-Squared 

Double-squared: Y = sqrt(a + b*X^2) 0.9663 93.37% 

Squared-Y model: Y = sqrt(a + b*X) 0.9646 93.05% 

Squared-Y square root-X: Y = sqrt(a + b*sqrt(X)) 0.9631 92.77% 

Squared-Y logarithmic-X model: Y = sqrt(a + b*ln(X)) 0.9612 92.40% 

Squared-Y reciprocal-X model: Y = sqrt(a + b/X) -0.9563 91.45% 

Square root-X model: Y = a + b*sqrt(X) 0.9360 87.61% 

Logarithmic-X model: Y = a + b*ln(X) 0.9360 87.60% 

Linear model: Y = a + b*X 0.9356 87.53% 



Reciprocal-X model: Y = a + b/X -0.9348 87.38% 

Squared-X model: Y = a + b*X^2 0.9334 87.12% 

Square root-Y reciprocal-X model: Y = (a + b/X)^2 -0.9085 82.54% 

Square root-Y logarithmic-X model: Y = (a + b*ln(X))^2 0.9078 82.42% 

Double square root model: Y = (a + b*sqrt(X))^2 0.9069 82.25% 

Square root-Y model: Y = (a + b*X)^2 0.9055 82.00% 

Square root-Y squared-X model: Y = (a + b*X^2)^2 0.9015 81.27% 

S-curve model: Y = exp(a + b/X) -0.8720 76.04% 

Multiplicative model: Y = a*X^b 0.8696 75.62% 

Logarithmic-Y square root-X model: Y = exp(a + b*sqrt(X)) 0.8678 75.30% 

Exponential model: Y = exp(a + b*X) 0.8655 74.91% 

Logarithmic-Y squared-X: Y = exp(a + b*X^2) 0.8598 73.92% 

Double reciprocal model: Y = 1/(a + b/X) 0.7824 61.22% 

Reciprocal-Y logarithmic-X model: Y = 1/(a + b*ln(X)) -0.7773 60.42% 

Reciprocal-Y square root-X: Y = 1/(a + b*sqrt(X)) -0.7742 59.94% 

Reciprocal-Y model: Y = 1/(a + b*X) -0.7707 59.39% 

Reciprocal-Y squared-X: Y = 1/(a + b*X^2) -0.7625 58.14% 

Logistic model: Y = exp(a + b*X)/(1 + exp(a + b*X)) <="" td="">    

Log probit model: Y = normal(a + b*ln(X)) <="" td="">    

 

The StatAdvisor  

This table shows the results of fitting several curvilinear models to the data. Of the models fitted, 

the double squared model yields the highest R-Squared value with 93.3671%. This is the 

currently selected model. 

Simple Regression - BMWP autumn 2011 vs. WQI autumn 2011  
Dependent variable: BMWP autumn 2011  

Independent variable: WQI autumn 2011  

Squared-Y reciprocal-X model: Y = sqrt(a + b/X)  

 

Coefficients  

  Least Squares Standard T   

Parameter Estimate Error Statistic P-Value 

Intercept 4915.45 1322.75 3.71608 0.0339 

Slope -201123 71407.1 -2.81657 0.0669 

 

Analysis of Variance  

Source Sum of Squares Df Mean Square F-Ratio P-Value 

Model 1.28195E+06 1 1.28195E+06 7.93 0.0669 

Residual 484788 3 161596     

Total (Corr.) 1.76674E+06 4       



 

Correlation Coefficient = -0.851823  

R-squared = 72.5603 percent  

R-squared (adjusted for d.f.) = 63.4137 percent  

Standard Error of Est. = 401.99  

Mean absolute error = 258.711  

Durbin-Watson statistic = 1.30488 (P= 0.1758 )  

Lag 1 residual autocorrelation = -0.104446  

 

The StatAdvisor  

The output shows the results of fitting a squared-Y reciprocal-X model to describe the 

relationship between BMWP autumn 2011 and WQI autumn 2011. The equation of the fitted 

model is 

 

  BMWP autumn 2011 = sqrt(4915.45 - 201123/WQI autumn 2011) 

 

Since the P-value in the ANOVA table is greater or equal to 0.05, there is not a statistically 

significant relationship between BMWP autumn 2011 and WQI autumn 2011 at the 95% or 

higher confidence level. 

 

The R-Squared statistic indicates that the model as fitted explains 72.5603% of the variability in 

BMWP autumn 2011. The correlation coefficient equals -0.851823, indicating a moderately 

strong relationship between the variables. The standard error of the estimate shows the standard 

deviation of the residuals to be 401.99. 

 

The mean absolute error (MAE) of 258.711 is the average value of the residuals. The Durbin-

Watson (DW) statistic tests the residuals to determine if there is any significant correlation based 

on the order in which they occur in your data file. Since the P-value is greater than 0.05, there is 

no indication of serial autocorrelation in the residuals at the 95% confidence level.  

 

Plot of Fitted Model 



 
 

The StatAdvisor  

The output shows the results of fitting a squared-Y reciprocal-X model to describe the 

relationship between BMWP autumn 2011 and WQI autumn 2011. The equation of the fitted 

model, shown as a solid line, is 

 

  BMWP autumn 2011 = sqrt(4915.45 - 201123/WQI autumn 2011) 

 

The inner bounds show 95% confidence limits for the mean BMWP autumn 2011 of many 

observations at given values of WQI autumn 2011. The outer bounds show 95% prediction limits 

for new observations.  

 

Comparison of Alternative Models  

Model Correlation R-Squared 

Squared-Y reciprocal-X model: Y = sqrt(a + b/X) -0.8518 72.56% 

Squared-Y logarithmic-X model: Y = sqrt(a + b*ln(X)) 0.8474 71.81% 

Squared-Y square root-X: Y = sqrt(a + b*sqrt(X)) 0.8451 71.42% 

Squared-Y model: Y = sqrt(a + b*X) 0.8427 71.02% 

Double-squared: Y = sqrt(a + b*X^2) 0.8376 70.16% 

Reciprocal-X model: Y = a + b/X -0.8152 66.46% 

Logarithmic-X model: Y = a + b*ln(X) 0.8053 64.85% 

Square root-X model: Y = a + b*sqrt(X) 0.8002 64.03% 



Linear model: Y = a + b*X 0.7950 63.20% 

Square root-Y reciprocal-X model: Y = (a + b/X)^2 -0.7936 62.97% 

Squared-X model: Y = a + b*X^2 0.7843 61.52% 

Square root-Y logarithmic-X model: Y = (a + b*ln(X))^2 0.7812 61.02% 

Double square root model: Y = (a + b*sqrt(X))^2 0.7749 60.04% 

S-curve model: Y = exp(a + b/X) -0.7722 59.62% 

Square root-Y model: Y = (a + b*X)^2 0.7685 59.05% 

Multiplicative model: Y = a*X^b 0.7577 57.42% 

Square root-Y squared-X model: Y = (a + b*X^2)^2 0.7554 57.07% 

Logarithmic-Y square root-X model: Y = exp(a + b*sqrt(X)) 0.7504 56.31% 

Exponential model: Y = exp(a + b*X) 0.7430 55.20% 

Double reciprocal model: Y = 1/(a + b/X) 0.7362 54.20% 

Logarithmic-Y squared-X: Y = exp(a + b*X^2) 0.7279 52.99% 

Reciprocal-Y logarithmic-X model: Y = 1/(a + b*ln(X)) -0.7188 51.67% 

Reciprocal-Y square root-X: Y = 1/(a + b*sqrt(X)) -0.7100 50.41% 

Reciprocal-Y model: Y = 1/(a + b*X) -0.7011 49.16% 

Reciprocal-Y squared-X: Y = 1/(a + b*X^2) -0.6832 46.67% 

Logistic model: Y = exp(a + b*X)/(1 + exp(a + b*X)) <="" td="">    

Log probit model: Y = normal(a + b*ln(X)) <="" td="">    

 

The StatAdvisor  

This table shows the results of fitting several curvilinear models to the data. Of the models fitted, 

the squared-Y reciprocal-X model yields the highest R-Squared value with 72.5603%. This is the 

currently selected model. 

Simple Regression - Margalef autumn 2011 vs. WQI autumn 2011  
Dependent variable: Margalef autumn 2011  

Independent variable: WQI autumn 2011  

Square root-Y reciprocal-X model: Y = (a + b/X)^2  

 

Coefficients  

  Least Squares Standard T   

Parameter Estimate Error Statistic P-Value 

Intercept 2.61763 0.392182 6.67453 0.0069 

Slope -66.471 21.1714 -3.13966 0.0517 

 

Analysis of Variance  

Source Sum of Squares Df Mean Square F-Ratio P-Value 

Model 0.140027 1 0.140027 9.86 0.0517 

Residual 0.0426157 3 0.0142052     

Total (Corr.) 0.182643 4       



 

Correlation Coefficient = -0.875598  

R-squared = 76.6673 percent  

R-squared (adjusted for d.f.) = 68.8897 percent  

Standard Error of Est. = 0.119186  

Mean absolute error = 0.0839355  

Durbin-Watson statistic = 1.41929 (P= 0.2103 )  

Lag 1 residual autocorrelation = 0.0700378  

 

The StatAdvisor  

The output shows the results of fitting a square root-Y reciprocal-X model to describe the 

relationship between Margalef autumn 2011 and WQI autumn 2011. The equation of the fitted 

model is 

 

  Margalef autumn 2011 = (2.61763 - 66.471/WQI autumn 2011)^2 

 

Since the P-value in the ANOVA table is greater or equal to 0.05, there is not a statistically 

significant relationship between Margalef autumn 2011 and WQI autumn 2011 at the 95% or 

higher confidence level. 

 

The R-Squared statistic indicates that the model as fitted explains 76.6673% of the variability in 

Margalef autumn 2011. The correlation coefficient equals -0.875598, indicating a moderately 

strong relationship between the variables. The standard error of the estimate shows the standard 

deviation of the residuals to be 0.119186. 

 

The mean absolute error (MAE) of 0.0839355 is the average value of the residuals. The Durbin-

Watson (DW) statistic tests the residuals to determine if there is any significant correlation based 

on the order in which they occur in your data file. Since the P-value is greater than 0.05, there is 

no indication of serial autocorrelation in the residuals at the 95% confidence level.  

 

Plot of Fitted Model 



 
 

The StatAdvisor  

The output shows the results of fitting a square root-Y reciprocal-X model to describe the 

relationship between Margalef autumn 2011 and WQI autumn 2011. The equation of the fitted 

model, shown as a solid line, is 

 

  Margalef autumn 2011 = (2.61763 - 66.471/WQI autumn 2011)^2 

 

The inner bounds show 95% confidence limits for the mean Margalef autumn 2011 of many 

observations at given values of WQI autumn 2011. The outer bounds show 95% prediction limits 

for new observations.  

 

Comparison of Alternative Models  

Model Correlation R-Squared 

Square root-Y reciprocal-X model: Y = (a + b/X)^2 -0.8756 76.67% 

S-curve model: Y = exp(a + b/X) -0.8740 76.39% 

Square root-Y logarithmic-X model: Y = (a + b*ln(X))^2 0.8738 76.35% 

Squared-X model: Y = a + b*X^2 0.8732 76.25% 

Linear model: Y = a + b*X 0.8729 76.19% 

Double square root model: Y = (a + b*sqrt(X))^2 0.8727 76.17% 

Square root-X model: Y = a + b*sqrt(X) 0.8725 76.13% 

Logarithmic-X model: Y = a + b*ln(X) 0.8721 76.06% 



Square root-Y model: Y = (a + b*X)^2 0.8716 75.97% 

Reciprocal-X model: Y = a + b/X -0.8710 75.87% 

Multiplicative model: Y = a*X^b 0.8694 75.58% 

Square root-Y squared-X model: Y = (a + b*X^2)^2 0.8690 75.52% 

Logarithmic-Y square root-X model: Y = exp(a + b*sqrt(X)) 0.8669 75.15% 

Double-squared: Y = sqrt(a + b*X^2) 0.8645 74.74% 

Exponential model: Y = exp(a + b*X) 0.8643 74.71% 

Logarithmic-Y squared-X: Y = exp(a + b*X^2) 0.8589 73.77% 

Squared-Y model: Y = sqrt(a + b*X) 0.8584 73.69% 

Squared-Y square root-X: Y = sqrt(a + b*sqrt(X)) 0.8553 73.15% 

Double reciprocal model: Y = 1/(a + b/X) 0.8549 73.09% 

Squared-Y logarithmic-X model: Y = sqrt(a + b*ln(X)) 0.8520 72.59% 

Squared-Y reciprocal-X model: Y = sqrt(a + b/X) -0.8454 71.47% 

Reciprocal-Y logarithmic-X model: Y = 1/(a + b*ln(X)) -0.8453 71.45% 

Reciprocal-Y square root-X: Y = 1/(a + b*sqrt(X)) -0.8403 70.61% 

Reciprocal-Y model: Y = 1/(a + b*X) -0.8352 69.76% 

Reciprocal-Y squared-X: Y = 1/(a + b*X^2) -0.8247 68.01% 

Logistic model: Y = exp(a + b*X)/(1 + exp(a + b*X)) <="" td="">    

Log probit model: Y = normal(a + b*ln(X)) <="" td="">    

 

The StatAdvisor  

This table shows the results of fitting several curvilinear models to the data. Of the models fitted, 

the square root-Y reciprocal-X model yields the highest R-Squared value with 76.6673%. This is 

the currently selected model. 

Simple Regression - Margalef spring 2012 vs. WQI spring 2012  
Dependent variable: Margalef spring 2012  

Independent variable: WQI spring 2012  

Double reciprocal model: Y = 1/(a + b/X)  

 

Coefficients  

  Least Squares Standard T   

Parameter Estimate Error Statistic P-Value 

Intercept -1.12456 0.440117 -2.55514 0.0836 

Slope 89.2275 20.8 4.28979 0.0233 

 

Analysis of Variance  

Source Sum of Squares Df Mean Square F-Ratio P-Value 

Model 0.321541 1 0.321541 18.40 0.0233 

Residual 0.0524186 3 0.0174729     

Total (Corr.) 0.373959 4       



 

Correlation Coefficient = 0.927269  

R-squared = 85.9828 percent  

R-squared (adjusted for d.f.) = 81.3104 percent  

Standard Error of Est. = 0.132185  

Mean absolute error = 0.0844249  

Durbin-Watson statistic = 2.80763 (P= 0.7967 )  

Lag 1 residual autocorrelation = -0.439997  

 

The StatAdvisor  

The output shows the results of fitting a double reciprocal model to describe the relationship 

between Margalef spring 2012 and WQI spring 2012. The equation of the fitted model is 

 

  Margalef spring 2012 = 1/(-1.12456 + 89.2275/WQI spring 2012) 

 

Since the P-value in the ANOVA table is less than 0.05, there is a statistically significant 

relationship between Margalef spring 2012 and WQI spring 2012 at the 95% confidence level. 

 

The R-Squared statistic indicates that the model as fitted explains 85.9828% of the variability in 

Margalef spring 2012. The correlation coefficient equals 0.927269, indicating a relatively strong 

relationship between the variables. The standard error of the estimate shows the standard 

deviation of the residuals to be 0.132185. 

 

The mean absolute error (MAE) of 0.0844249 is the average value of the residuals. The Durbin-

Watson (DW) statistic tests the residuals to determine if there is any significant correlation based 

on the order in which they occur in your data file. Since the P-value is greater than 0.05, there is 

no indication of serial autocorrelation in the residuals at the 95% confidence level.  

 

Plot of Fitted Model 



 
 

The StatAdvisor  

The output shows the results of fitting a double reciprocal model to describe the relationship 

between Margalef spring 2012 and WQI spring 2012. The equation of the fitted model, shown as 

a solid line, is 

 

  Margalef spring 2012 = 1/(-1.12456 + 89.2275/WQI spring 2012) 

 

The inner bounds show 95% confidence limits for the mean Margalef spring 2012 of many 

observations at given values of WQI spring 2012. The outer bounds show 95% prediction limits 

for new observations.  

 

Comparison of Alternative Models  

Model Correlation R-Squared 

Double reciprocal model: Y = 1/(a + b/X) 0.9273 85.98% 

Reciprocal-Y logarithmic-X model: Y = 1/(a + b*ln(X)) -0.9264 85.81% 

Reciprocal-Y square root-X: Y = 1/(a + b*sqrt(X)) -0.9258 85.72% 

Reciprocal-Y model: Y = 1/(a + b*X) -0.9252 85.61% 

Reciprocal-Y squared-X: Y = 1/(a + b*X^2) -0.9238 85.35% 

S-curve model: Y = exp(a + b/X) -0.8756 76.67% 

Multiplicative model: Y = a*X^b 0.8745 76.48% 

Logarithmic-Y square root-X model: Y = exp(a + b*sqrt(X)) 0.8739 76.37% 



Exponential model: Y = exp(a + b*X) 0.8732 76.24% 

Logarithmic-Y squared-X: Y = exp(a + b*X^2) 0.8716 75.96% 

Square root-Y reciprocal-X model: Y = (a + b/X)^2 -0.8410 70.72% 

Square root-Y logarithmic-X model: Y = (a + b*ln(X))^2 0.8397 70.51% 

Double square root model: Y = (a + b*sqrt(X))^2 0.8390 70.39% 

Square root-Y model: Y = (a + b*X)^2 0.8382 70.25% 

Square root-Y squared-X model: Y = (a + b*X^2)^2 0.8363 69.94% 

Reciprocal-X model: Y = a + b/X -0.8018 64.29% 

Logarithmic-X model: Y = a + b*ln(X) 0.8003 64.05% 

Square root-X model: Y = a + b*sqrt(X) 0.7995 63.92% 

Linear model: Y = a + b*X 0.7985 63.77% 

Squared-X model: Y = a + b*X^2 0.7964 63.43% 

Squared-Y reciprocal-X model: Y = sqrt(a + b/X) -0.7172 51.44% 

Squared-Y logarithmic-X model: Y = sqrt(a + b*ln(X)) 0.7151 51.14% 

Squared-Y square root-X: Y = sqrt(a + b*sqrt(X)) 0.7139 50.97% 

Squared-Y model: Y = sqrt(a + b*X) 0.7127 50.79% 

Double-squared: Y = sqrt(a + b*X^2) 0.7099 50.39% 

Logistic model: Y = exp(a + b*X)/(1 + exp(a + b*X)) <="" td="">    

Log probit model: Y = normal(a + b*ln(X)) <="" td="">    

 

The StatAdvisor  

This table shows the results of fitting several curvilinear models to the data. Of the models fitted, 

the double reciprocal model yields the highest R-Squared value with 85.9828%. This is the 

currently selected model. 

Simple Regression - DSWI spring 2012 vs. WQI spring 2012  
Dependent variable: DSWI spring 2012  

Independent variable: WQI spring 2012  

Reciprocal-Y squared-X: Y = 1/(a + b*X^2)  

 

Coefficients  

  Least Squares Standard T   

Parameter Estimate Error Statistic P-Value 

Intercept 0.987238 0.102025 9.67643 0.0023 

Slope -0.000174157 4.13467E-05 -4.2121 0.0244 

 

Analysis of Variance  

Source Sum of Squares Df Mean Square F-Ratio P-Value 

Model 0.053301 1 0.053301 17.74 0.0244 

Residual 0.00901277 3 0.00300426     

Total (Corr.) 0.0623138 4       



 

Correlation Coefficient = -0.924859  

R-squared = 85.5365 percent  

R-squared (adjusted for d.f.) = 80.7153 percent  

Standard Error of Est. = 0.0548111  

Mean absolute error = 0.030519  

Durbin-Watson statistic = 2.80029 (P= 0.8010 )  

Lag 1 residual autocorrelation = -0.407444  

 

The StatAdvisor  

The output shows the results of fitting a reciprocal-Y squared-X model to describe the 

relationship between DSWI spring 2012 and WQI spring 2012. The equation of the fitted model 

is 

 

  DSWI spring 2012 = 1/(0.987238 - 0.000174157*WQI spring 2012^2) 

 

Since the P-value in the ANOVA table is less than 0.05, there is a statistically significant 

relationship between DSWI spring 2012 and WQI spring 2012 at the 95% confidence level. 

 

The R-Squared statistic indicates that the model as fitted explains 85.5365% of the variability in 

DSWI spring 2012. The correlation coefficient equals -0.924859, indicating a relatively strong 

relationship between the variables. The standard error of the estimate shows the standard 

deviation of the residuals to be 0.0548111. 

 

The mean absolute error (MAE) of 0.030519 is the average value of the residuals. The Durbin-

Watson (DW) statistic tests the residuals to determine if there is any significant correlation based 

on the order in which they occur in your data file. Since the P-value is greater than 0.05, there is 

no indication of serial autocorrelation in the residuals at the 95% confidence level.  

 

Plot of Fitted Model 



 
 

The StatAdvisor  

The output shows the results of fitting a reciprocal-Y squared-X model to describe the 

relationship between DSWI spring 2012 and WQI spring 2012. The equation of the fitted model, 

shown as a solid line, is 

 

  DSWI spring 2012 = 1/(0.987238 - 0.000174157*WQI spring 2012^2) 

 

The inner bounds show 95% confidence limits for the mean DSWI spring 2012 of many 

observations at given values of WQI spring 2012. The outer bounds show 95% prediction limits 

for new observations.  

 

Comparison of Alternative Models  

Model Correlation R-Squared 

Reciprocal-Y squared-X: Y = 1/(a + b*X^2) -0.9249 85.54% 

Reciprocal-Y model: Y = 1/(a + b*X) -0.9244 85.45% 

Reciprocal-Y square root-X: Y = 1/(a + b*sqrt(X)) -0.9241 85.39% 

Reciprocal-Y logarithmic-X model: Y = 1/(a + b*ln(X)) -0.9238 85.33% 

Double reciprocal model: Y = 1/(a + b/X) 0.9231 85.20% 

Logarithmic-Y squared-X: Y = exp(a + b*X^2) 0.9040 81.72% 

Exponential model: Y = exp(a + b*X) 0.9033 81.60% 

Logarithmic-Y square root-X model: Y = exp(a + b*sqrt(X)) 0.9030 81.54% 



Multiplicative model: Y = a*X^b 0.9026 81.46% 

S-curve model: Y = exp(a + b/X) -0.9017 81.31% 

Square root-Y squared-X model: Y = (a + b*X^2)^2 0.8924 79.64% 

Square root-Y model: Y = (a + b*X)^2 0.8917 79.51% 

Double square root model: Y = (a + b*sqrt(X))^2 0.8913 79.44% 

Square root-Y logarithmic-X model: Y = (a + b*ln(X))^2 0.8909 79.36% 

Square root-Y reciprocal-X model: Y = (a + b/X)^2 -0.8899 79.20% 

Squared-X model: Y = a + b*X^2 0.8802 77.48% 

Linear model: Y = a + b*X 0.8794 77.34% 

Square root-X model: Y = a + b*sqrt(X) 0.8790 77.26% 

Logarithmic-X model: Y = a + b*ln(X) 0.8785 77.18% 

Reciprocal-X model: Y = a + b/X -0.8776 77.01% 

Double-squared: Y = sqrt(a + b*X^2) 0.8543 72.99% 

Squared-Y model: Y = sqrt(a + b*X) 0.8535 72.84% 

Squared-Y square root-X: Y = sqrt(a + b*sqrt(X)) 0.8530 72.76% 

Squared-Y logarithmic-X model: Y = sqrt(a + b*ln(X)) 0.8525 72.68% 

Squared-Y reciprocal-X model: Y = sqrt(a + b/X) -0.8515 72.51% 

Logistic model: Y = exp(a + b*X)/(1 + exp(a + b*X)) <="" td="">    

Log probit model: Y = normal(a + b*ln(X)) <="" td="">    

 

The StatAdvisor  

This table shows the results of fitting several curvilinear models to the data. Of the models fitted, 

the reciprocal-Y squared-X model yields the highest R-Squared value with 85.5365%. This is the 

currently selected model. 

Simple Regression - Oligochaeta [%] spring 2012 vs. WQI spring 2012  
Dependent variable: Oligochaeta [%] spring 2012  

Independent variable: WQI spring 2012  

Double-squared: Y = sqrt(a + b*X^2)  

 

Coefficients  

  Least Squares Standard T   

Parameter Estimate Error Statistic P-Value 

Intercept 3780.22 979.11 3.86087 0.0307 

Slope -1.1592 0.396795 -2.9214 0.0614 

 

Analysis of Variance  

Source Sum of Squares Df Mean Square F-Ratio P-Value 

Model 2.3614E+06 1 2.3614E+06 8.53 0.0614 

Residual 830058 3 276686     

Total (Corr.) 3.19146E+06 4       



 

Correlation Coefficient = -0.860182  

R-squared = 73.9912 percent  

R-squared (adjusted for d.f.) = 65.3217 percent  

Standard Error of Est. = 526.01  

Mean absolute error = 291.78  

Durbin-Watson statistic = 2.66934 (P= 0.7515 )  

Lag 1 residual autocorrelation = -0.335515  

 

The StatAdvisor  

The output shows the results of fitting a double squared model to describe the relationship 

between Oligochaeta [%] spring 2012 and WQI spring 2012. The equation of the fitted model is 

 

  Oligochaeta [%] spring 2012 = sqrt(3780.22 - 1.1592*WQI spring 2012^2) 

 

Since the P-value in the ANOVA table is greater or equal to 0.05, there is not a statistically 

significant relationship between Oligochaeta [%] spring 2012 and WQI spring 2012 at the 95% 

or higher confidence level. 

 

The R-Squared statistic indicates that the model as fitted explains 73.9912% of the variability in 

Oligochaeta [%] spring 2012. The correlation coefficient equals -0.860182, indicating a 

moderately strong relationship between the variables. The standard error of the estimate shows 

the standard deviation of the residuals to be 526.01. 

 

The mean absolute error (MAE) of 291.78 is the average value of the residuals. The Durbin-

Watson (DW) statistic tests the residuals to determine if there is any significant correlation based 

on the order in which they occur in your data file. Since the P-value is greater than 0.05, there is 

no indication of serial autocorrelation in the residuals at the 95% confidence level.  

 

Plot of Fitted Model 



 
 

The StatAdvisor  

The output shows the results of fitting a double squared model to describe the relationship 

between Oligochaeta [%] spring 2012 and WQI spring 2012. The equation of the fitted model, 

shown as a solid line, is 

 

  Oligochaeta [%] spring 2012 = sqrt(3780.22 - 1.1592*WQI spring 2012^2) 

 

The inner bounds show 95% confidence limits for the mean Oligochaeta [%] spring 2012 of 

many observations at given values of WQI spring 2012. The outer bounds show 95% prediction 

limits for new observations.  

 

Comparison of Alternative Models  

Model Correlation R-Squared 

Double-squared: Y = sqrt(a + b*X^2) -0.8602 73.99% 

Squared-Y model: Y = sqrt(a + b*X) -0.8579 73.60% 

Squared-Y square root-X: Y = sqrt(a + b*sqrt(X)) -0.8567 73.40% 

Squared-Y logarithmic-X model: Y = sqrt(a + b*ln(X)) -0.8556 73.20% 

Squared-Y reciprocal-X model: Y = sqrt(a + b/X) 0.8534 72.82% 

Squared-X model: Y = a + b*X^2 -0.7816 61.09% 

Linear model: Y = a + b*X -0.7801 60.86% 

Square root-X model: Y = a + b*sqrt(X) -0.7793 60.74% 



Logarithmic-X model: Y = a + b*ln(X) -0.7786 60.62% 

Reciprocal-X model: Y = a + b/X 0.7770 60.37% 

Square root-Y squared-X model: Y = (a + b*X^2)^2 -0.7138 50.95% 

Square root-Y model: Y = (a + b*X)^2 -0.7137 50.94% 

Double square root model: Y = (a + b*sqrt(X))^2 -0.7136 50.92% 

Square root-Y logarithmic-X model: Y = (a + b*ln(X))^2 -0.7135 50.91% 

Square root-Y reciprocal-X model: Y = (a + b/X)^2 0.7131 50.86% 

S-curve model: Y = exp(a + b/X) 0.6219 38.67% 

Multiplicative model: Y = a*X^b -0.6204 38.49% 

Logarithmic-Y square root-X model: Y = exp(a + b*sqrt(X)) -0.6195 38.38% 

Exponential model: Y = exp(a + b*X) -0.6186 38.27% 

Logarithmic-Y squared-X: Y = exp(a + b*X^2) -0.6165 38.01% 

Double reciprocal model: Y = 1/(a + b/X) -0.4473 20.01% 

Reciprocal-Y logarithmic-X model: Y = 1/(a + b*ln(X)) 0.4427 19.60% 

Reciprocal-Y square root-X: Y = 1/(a + b*sqrt(X)) 0.4402 19.38% 

Reciprocal-Y model: Y = 1/(a + b*X) 0.4376 19.15% 

Reciprocal-Y squared-X: Y = 1/(a + b*X^2) 0.4319 18.65% 

Logistic model: Y = exp(a + b*X)/(1 + exp(a + b*X)) <="" td="">    

Log probit model: Y = normal(a + b*ln(X)) <="" td="">    

 

The StatAdvisor  

This table shows the results of fitting several curvilinear models to the data. Of the models fitted, 

the double squared model yields the highest R-Squared value with 73.9912%. This is the 

currently selected model. 

 

Conclusions 

From the results can be observed that in the corresponding seasons was registered a big 

influence of WQI index on certain biological indicators such as: BMWP (Biological 

Monitoring Working Party), ASPT (Average Score per Taxon), DSI (Simpson index), 

Margalef index (Margalef) and the abundance of Oligochaetes (Oligo. no.). Thus, is verified 

the hypothesis that macroinvertebrates communities are influenced by water chemistry. 

These correlations express that there is the possibility of immediate reactions from benthic 

communities to influence environmental parameters due to the existence of sensitive species 

that may disappear after a wave of major accidental pollution. Even if WQI not exceeded 

in all seasons monitored, any anthropogenic impact leads to changes in the benthic 

communities which are sensitive, statistical correlations pointing out that the abundance, 



diversity, sensitivity and number of species in the community are closely related to water 

chemistry, even if the ecosystem has not been subjected to high anthropogenic pressure. 

Also, our study show that different types of bio-indices have statistically significant 

relationships with chemical characteristics of water expressed in WQI index. 
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